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Small- and large-scale global shape features 
in macromolecular backbones 
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A methodology to analyze and characterize small- and large-scale shape and structural 
features in a macromolecule is presented. The procedure involves the construction of 
a continuum of spherical shape maps. This continuum is built by analyzing the overcrossing 
pattern of a molecular space curve from every direction in 3-space as seen by a viewer 
with a reduced vision field. The method derives global shape descriptors (shape maps) 
that characterize the backbone as a whole (large-scale structure), but also allows one 
to focus the analysis on details of the backbone's small-scale structure. A continuous 
function is proposed as a simplified descriptor derived from the shape maps. This 
function discriminates reasonably well among elements of secondary structure and 
supersecondary structural motifs in proteins. The procedure is applied to ct-helices, 13- 
sheets, and models of ~t-helical packing. 

1. Introduction 

The basic notion in rational drug design is the expectation that molecules 
with similar shapes will exhibit comparable physical and chemical properties [1]. 
Consequently, current studies in computer-assisted molecular  pharmacology rely 
heavily on techniques and criteria to make quantitative assessments of  molecular  
shape and molecular similarity. In this work, we are concerned with the characterization 
of  some aspects of  the three-dimensional shape of  large chain molecules. 

The analysis of  biomacromolecules requires an approach completely different 
from that used for small molecules. Not only do the models used to convey the 
three-dimensional shape of  the molecule have to be different, but it is also necessary 
to pay attention to quite different shape features. For instance, many properties o f  
large molecules such as proteins depend mostly on global folding characteristics 
rather than on local surface features [2-7] .  

The simplest model of  a chain molecule that describes its essential folding 
features is the so-called molecular backbone. This is a space curve defined by the 
sequence of  main chain atoms. 

In our case, we are especially interested in proteins. Here, the backbone is 
defined by the sequence of  straight-line segments joining neighboring a -ca rbon  
atoms belonging to each amino acid residue. Protein backbones usually present a 
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hierarchical organization provided by the occurrence of some basic substructures 
such as helices, strands, and turns, which are known as the elements of secondary 
structure (or secondary-structural motifs) in a protein. Recognizing the occurrence 
of such motifs is one of the aims of any characterization techniques. 

There are several procedures proposed to describe quantitatively the shapes 
of protein backbones. Some of them, such as the well-known Ramachandran diagrams 
[3-7] and distance maps [8], provide a very detailed local geometrical description 
in terms of angles and distances. 

In contrast, topological (as opposed to geometrical) techniques provide a 
global description of the backbone's shape. These approaches use the same basic 
input information regarding the location of nuclei, but describe the shape in terms 
of features which consider the backbone as a whole entity. Many of these 
characterizations do not essentially change for small nuclear motions and thus 
provide a criterion to estimate the role of configurational rearrangements in distorting 
the molecular shape. 

Graph-theoretical and simple topological descriptors have been proposed to 
classify protein structures and assist in homology searches in data-bases [9-16]. 
Louie and Somorjai [17-19] have applied differential topology to the study of 
molecular space curves. In the present work, we continue the development of a 
methodology to characterize protein backbones based on the knowledge of the 
complete pattern of overcrossings [20-24]. The procedure uses geometric information 
(the overcrossings between segments of the backbone) to derive a global topological 
characterization of the fold. 

The method providing shape descriptors for a backbone is discussed in refs. 
[20,24]. The technique is based on the analysis of the crossing patterns of a 
macromolecular backbone viewed from all possible directions in space. The procedure 
assigns a spherical shape map to each given molecular backbone. A spherical shape 
map classifies the points on the spherical surface of a ball enclosing the backbone 
into regions according to the crossings in plane curves derived by projecting the 
backbone to a plane tangent to the sphere at each point. As a result, one has a 
classification into equivalence classes of the 3-space surrounding the molecular curve. 
Each equivalence class is characterized by a distinct value of a shape descriptor. The 
simplest of such shape descriptors is the number of crossings in the projected plane 
curves. We shall refer to this approach as a large-scale global shape characterization 
of the backbone, since the complete crossing pattern is taken into account. 

In this work, we generalize this method by also incorporating into the analysis 
the small-scale shape features. These features correspond to the details of the relative 
distances between crossings and their distribution in 3-space. Again, the procedure 
is global, but in this case it is possible to discriminate the occurrence of special 
arrangements at sma~ geometrical scale from those at large geometrical scale in the 
analysis. 

The method we propose involves the construction of a continuum of spherical 
shape maps built from the overcrossing pattern of a space curve viewed from every 
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direction in space by an observer with a reduced vision field. We introduce a 
continuous function derived from the reduced-view spherical shape maps that 
discriminates among structural motifs in proteins. The procedure is illustrated with 
example motifs and the packing of tx-helices. 

2. The reduced-view spherical shape maps of a space curve 

The methodology we present in this section is an extension of the procedure 
developed in refs. [20, 24] for the characterization of molecular space curves. In this 
section, we briefly discuss the original approach and the present generalization. 

A molecular space curve can be represented as a parametric function r(t) in 
3-space in terms of  the parameter t, t ~ [0, 1]. This curve is bounded and oriented. 
The starting point of  the curve is r(0) and the end point is r(1). In the case of protein 
backbones, the curve r(t) is defined by a sequence of  straight-line o~-carbon segments 
ri - ri + I, i > 1, where r i is the position vector of the ith o~-carbon atom on the curve, 
where i = 1, 2 . . . . .  n, with n being the number of amino acid residues. 

The essential idea behind the characterization method is to explore the details 
of the overcrossing pattern of the space curve from all directions in 3-space. In order 
to take into account all possible viewing directions for the backbone, we enclose 
it inside the smallest possible sphere centred at the geometrical centre r0 of the 
curve [24]. We shall indicate with S and R the spherical surface of the ball enclosing 
the curve and its radius, respectively. Thus, we have: 

S = {s ~3R: l l s - ro l l  = R}, (1) 

where II r i  - rol l  -< R for all i = 1, 2 . . . . .  n. Radius R is the smallest value that satisfies 
this condition. 

When viewed from an. arbitrary position in 3-space, the segments of  the curve 
r(t) may overcross. These features have been used to characterize the curves in 
terms of  graphs and their associated matrices [20,21]. The same information can 
be used to compute topological invariants such as knot polynomials [20-23]. 

The vectors obtained by joining the centre of  the ball with each point on the 
spherical surface S define viewing directions used to analyze the backbone. Let t~ 
be a generic viewing direction. The situation is depicted schematically in fig. 1. 
Here, we show a molecular space curve enclosed in the sphere S and one viewing 
direction t~. An observer located very far from the sphere will see the backbone as 
a 2D-photograph obtained by projecting the curve to a plane tangent to the sphere 
and perpendicular to v. If one indicates the projection operation to the tangent plane 
as Pv, then Pv{r(t)} is a plane curve derived from the space curve. This 
plane curve exhibits actual crossings wherever the original space curve has 
overcrossings [20-24]. These crossings allow one to construct the so-called spherical 
shape map of a space curve [24]. This map provides a global shape characterization 
of the backbone. The characterization makes use of large-scale shape features since 
all the overcrossings in the backbone are accounted for. 
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Fig. 1. Schematic representation of a protein backbone enclosed 
in the sphere S. The geometrical centre of the backbone coincides 
with the centre of the sphere. The viewing direction 1~ is indicated 
by a dashed line joining the viewer with the centre. The dashed- 
line circle represents the restricted viewing window (with radius 
Pw) used to monitor details in the molecular shape of the backbone. 

Another, more thorough characterization can be formulated within the same 
approach. For instance, one can describe the changes in crossing patterns from 
every viewing direction by considering the distance at which the overcrossings 
occur and the size of the backbone. In other words, one can pay attention to changes 
in shape features when moving from large-scale to small-scale. 

In this work, we propose an approach which accomplishes this by monitoring 
the view of  the projected curve by means of a circular viewing window. This is 
shown in fig. 1, where a circular window of  radius Pw is centred along the viewing 
direction. Figure 2 clarifies the role of the viewing window in the shape characterization. 
The diagram on the left-hand side of fig. 2 shows a generic projected plane curve 
derived from the backbone. The curve can be seen inside a circular window of 
radius R. Within this view (a "full" projection), we observe four crossings. The 
right-hand side diagram shows the view reduced by the window. (Note that the 
window is indicated as a full-line circle in the left-hand side diagram.) Within this 
restricted view, the original four crossings are reduced to two. The curve will 
exhibit two crossings for a range of values of the window radius. If Pw is small 
enough, the plane curve will have no crossings for this viewing direction. On the 
other hand, there is a critical value of the window radius, po  < R, above which the 
projected curve shows the saxne overcrossing pattern as the full projection Pu{r(t)}. 

In order to have a useful but simple characterization scheme, we shall take 
into consideration only the number of crossings. The handedness of each of  the 
crossings can also be incorporated by computing the crossing index vector characterizing 
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Fig. 2. Small-scale shape features revealed by the viewing window. 
The diagram on the left-hand side shows a full planar projection 
of a molecular backbone enclosed in the sphere with radius R. The 
full-line circle in the centre corresponds to the viewing window. 
The diagram to the right shows the restricted view within the 
window. Since the procedure ignores all details outside the window, 
the number of crossings is reduced from four to two in this case. 

the view (cf. ref. [24]). However, we shall see that the number of crossings associated 
with a given view and a given window radius is sufficient to provide a quite detailed 
analysis. 

Let v(pw; v) be the number of  crossings exhibited by the projected curve 
Pv{r(t)} for a window of radius Pw. According to the above discussion, 

v(pw; v) < v(p°; v)  = N ' ( v ) ,  0 < p,,, < ,o ° < R. (2) 

The integer number function V(pw; v) is a shape descriptor of the curve viewed 
along the given direction. The same approach can be followed for any other viewing 
direction ~. If the procedure is repeated for all points on the sphere S, we can divide 
the sphere itself into equivalence regions on the condition that points on each region 
define viewing directions leading to the same number of crossings for a given 
window radius Pw. 

We can introduce a single integer number N as the one feature that all points 
belonging to an equivalence class have in common. This integer N can take any 
value between 0 (no crossings) and v*(pw), which is the maximum number of  
crossings observed on the sphere with a window of radius Pw (that is, v* = max 
v(pw; v), over v). One such equivalence class is defined as the set SN(pw): 

s N ( p . )  = { r e  s,  v ( p . ;  1,) = N}, N = O, 1 . . . . .  v ' ( p . ) .  (3) 
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Note that in practice there is always a window radius pw for which the set So(pw) 
is nonempty. This is due to the fact that a real, macromolecular backbone cannot 
fill the ball completely and, accordingly, there will always exist a radius Pw small 
enough so that the curve does not exhibit crossings for some projection. The same 
cannot be said for other regions SN(pw), N > 1. We shall show below that the study 
of the region on the sphere where the projected plane curve has no crossings (N = 0) 
may suffice to derive a detailed characterization of the backbone. 

Each of the equivalence classes on the spherical surface can be formed by 
a number of disjoint regions (maximum components) S~)(pw), 

SN(Pw ) = u. S~)(pw), (4) 

whose number and relative location depends on the type of space curve r(t). These 
equivalence classes provide a partitioning and a topological structure to the spherical 
surface S: 

S = kJ SN(Pw ). (5) 
N=0 

A partitioning of  the 3-space around the curve r(t) given by (5) is a reduced-view 
spherical shape map. By taking Pw = R, we find the special type of spherical shape 
maps discussed in ref. [24]. 

In summary, we can encode some essential shape features of the backbone's 
fold by using a continuum of spherical shape maps derived from the overcrossing 
pattern revealed by windows of varying size. As a result, the shape characterization 
of a fold is transformed into the characterization of the shape regions (equivalence 
classes) on the sphere S. Macromolecules exhibiting comparable shape features 
would change their spherical shape maps as a function of Pw in a similar manner. 

The continuum of spherical projection maps is computed in a totally automated 
manner by using a program developed in our laboratory [25]. In what follows, we 
shall restrict ourselves to the analysis of the regions on S with no crossings, instead 
of the whole maps. We shall refer to these as So(pw) maps. 

Figure 3 shows our first illustrative example of the shape characterization 
provided by the So(pw) maps. The space curve considered is a model 13-atom 
perfectly cylindrical helix. The helix has three loops and a nearest-neighbor distance 
of  1.0/~. The four diagrams in fig. 3 represent only hemispheres (the hemispheres 
not displayed are derived by an inversion of the map through the centre of the 
sphere). The dotted sections represent the directions in 3-space where the projected 
helix does not overcross itself, that is, the S0(Pw) region. For this example, one has 
p°w < 1 /k. Accordingly, the upper left diagram corresponds to the full-projection 
spherical shape map [24]. The features shown are characteristic of helices, since 
these do not exhibit overcrossings when observed along directions close to the 
normal to the helical axis [24]. The reduction of the window radius Pw shows that, 
predictably, there are more directions in 3-space along which no crossings occur. 
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Fig. 3. Series of spherical shape maps of a 13-atom perfect, cylindrical helix 
(three loops) for various values of the viewing window radius. The dotted regions 
correspond to directions on the viewing sphere where the space curve d o e s  n o t  

o v e r c r o s s  (that is, the S O region). The radius Pw = 1 A is above the critical value. 
The area of  the S O regions increases with a smaller Pw. The patterns on the sphere, 
i.e. the shape of So(pw), also provide information to characterize the backbone. 

The location of  these new directions as a function of  Pw depends on the length, 
number, and type of helices enclosed. The information retrieved from these maps 
is discussed in section 3. 

3. Areas of  S0(Pw) regions as shape descriptors: applications to t~-helices and 
~sheets 

The So(Pw) maps discussed in the previous section characterize some of the 
essential shape features of a molecular space curve. It would be desirable to use part 
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of the information encoded in these diagrams in a numerical fashion. This is particularly 
relevant regarding the nonvisual analysis of molecular folding patterns. 

A simple approach would be to use the area of the S0(Pw) region as a shape 
descriptor. Let AN(Pw) be the surface area of the region on S with the viewing 
directions along which the backbone exhibits N overcrossings (observed through the 
viewing window of radius Pw). It is evident that 

V e 

y~ AN(Pw ) = 4~ R 2, (6) 
N=0 

where R is the radius of the sphere. If one reduces the size of the viewing window, 
fewer directions leading to overcrossings are found. Note that directions leading to 
crossings will always be found, no matter how small Pw is (as long as the curve does 
overcross somewhere). However, these directions become isolated points on the 
sphere S for small Pw, and thus they do not contribute to the total area. In other 
words, for infinitesimally small windows, the So(pw) region will effectively cover 
the whole sphere: 

lim Ao(Pw ) = 4~R 2. (7) 
pw~0  

Since we are paying special attention to the region with no crossings, we shall 
characterize the reduced-view spherical shape maps by the fractional area A(pw): 

A(pw) = Ao(Pw)/4~ R 2. (8) 

Cu 
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Fig. 4. Change in the area of the no-crossing region So(pw ) 
with the window radius Pw for a series of perfect, cylindrical 
helices of various lengths. The number of atoms n = 5, 9, 13, 
and 17 defines helices with 1, 2, 3, and 4 loops, respectively. 
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Figure 4 shows the result of this analysis for a series of perfect cylindrical 
helices of various lengths. The diagram shows the fractional area A(pw) as a function 
of the window radius for helices of n = 5, 9, 13, and 17 atoms. These correspond 
to helices with 1, 2, 3, and 4 loops, respectively. 

The results in fig. 4 reveal a number of interesting facts. Note that the shorter 
helix has a no-crossing area larger than that of the other helices. This is consistent 
with the fact that the fewer the loops or turns, the smaller the number of crossings 
in a backbone. Note that the areas decrease when the number of atoms increase. The 
fact that the area A(pw) reaches the same limit value at Pw ~ oo for n = 7, 13, and 
17 is a consequence of dealing with very symmetrical helices. The results suggest 
that the change in area becomes smaller as the helix becomes longer. One could 
predict a critical number of atoms nc beyond which all perfect helices will have the 
same description. 

Figure 5 shows the results of a similar analysis for examples of actual protein 
m-helices. The examples are three helices of different length in sperm-whale 
myoglobin [26]. We have chosen the helices labeled as 3, 1, and 7 in the Protein 
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I I I I i v 

0 2 4 6 8 10 

Pw (A) 
Fig. 5. Change in the area of the no-crossing region So(pw) with 
the window radius Pw for three helices of various lengths in 
sperm-whale myoglobin. The helices are labeled according to 
their numbering in the Protein Data Bank structure. The number 
between parentheses indicates the number of atoms for each helix. 

Data Bank file corresponding to 7, 16, and 19 atoms in length, respectively. These 
helices are distorted cylindrical helices. The results reflect some of the trends 
revealed in fig. 4. The area A(pw) decreases with the length of the helix. Note that 
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the asymptoticvalues of  A(pw) for large window radii are different for each helix 
in this case. However, the overall functional dependence of  A(pw) is the same for 
all helices. These diagrams allow one to recognize the occurrence of  a helix and 
to characterize some of  its particular features such as length and deviation from 
perfect helicity. 

We can contrast the results for helices with those for a different secondary 
structural motif. Figure 6 shows three So(Pw) maps for a three-stranded 13-sheet with 
n = 17 atoms. As in fig. 3, the dotted areas correspond to sections on the sphere S 

, S ~ - _  

k .7: % . . . .  

Pw = R Pw = 1.0 A Pw = 0.5 A 

Fig. 6. Series of spherical shape maps of a 1T-atom model of a 
three-stranded 13-sheet for various values of the viewing window 
radius. The dotted area corresponds to directions showing no crossings. 
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0 l 2 3 4 

Pw (A) 
Fig. 7. Change in the area of the no-crossing region 
So(pw ) with the window radius Pw for models of 13-sheet 
and ix-helices with the same number of atoms (n = 17). 

defining viewing directions from where the 13-sheet does not overcross. Note that 
the region where crossings do occur now occupies a central elongated band. This 
behavior is roughly the opposite to that found in helices. The no-crossing region 
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becomes larger when the window radius decreases but its overall shape remains the 
same. Figure 7 compares the areas A(pw) of the ~3-sheet and a cylindrical o~-helix 
with the same number of atoms (in this case, 17). It is evident that the two structures 
are clearly distinguished by their ranges of values in A(pw) and by the functional 
dependence of the area with the window radius. The area decreases quickly with 
an increase in Pw for an a-helix, whereas it shows a rather slow change for a ~-sheet. 

The A(pw) functions discriminate between the two secondary structural elements. 
The same procedure can be applied to irregular structures where it is no longer 
possible to recognize any motif. In general, our approach provides a quantitative 
measure for similarity between the essential shapes of  any two backbones and 
permits one to recognize the formation of supersecondary motifs. This is especially 
useful when comparing proteins with different degrees of homology and when 
studying computer-simulated unfolding processes [27]. 

4. Characterization of o~-helical bundles 

In this section, we apply the methodology to the characterization of the 
packing of a-helices (i.e. a-helical bundles). 

Figure 8 shows schematically the type of models of  a-helical bundles studied. 
The figure displays the case of a set of three connected helices. We have considered 
cylindrical helices with 12 atoms each (three turns). Note that the connection of  the 

Scheme of a cylindrical,~ 
three-helical bundle ) 

z 

x i 

Fig. 8. Schematic representation of a 3-helical 
bundle. Each helix is modeled as a perfect, 
cylindrical ~-helix with three turns (12 atoms). 

helices alternates between the top and the bottom of  the helices and that the helical 
axes are parallel. 
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Fig. 9. So(pw) maps for c~-helical bundles. The results correspond to two 
window radii (5.0 and 0.5 ~ )  for 1, 2, 3, and 4-helical bundles. The changes 
in the approximate symmetry of the bundle are reflected in the maps. 

Figure 9 shows the results for the S0(Pw) maps for bundles with 1, 2, 3, and 
4 helices. The results are given for two window radii Pw = 5.0 and 0.5 A, which are 
larger than and smaller than pO, respectively. It is interesting to compare the maps. 
Note that the S0(5.0 A) region becomes smaller as the number of helices packed 
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grows larger, whereas S0(0.5 t%,) actually increases. Moreover, the shapes of the 
maps are quite altered. For a large window, we observe the occurrence of  the central 
band which is typical for o~-helices. This band identifies the direction of the axis 
of each helix (perpendicular to the band). The fact that this band becomes smaller 
and more disconnected as the bundle increases in size accounts for the fact that the 
total number of crossings (a large-scale feature) increases. 

In contrast, the location of the viewing directions leading to non-crossings 
appears to be rotated approximately 90 ° for small window radii. This is particularly 
evident in the case of the more symmetrical 2- and 4-helical bundle So(pw) maps. 
The maps for Pw = 0 .5 / l  reveal the small-scale shape features associated with the 
relative location and distribution of overcrossings in 3-space. For example, the two 
blank regions shown in the S0(0.5/l) map for the 4-helical bundle correspond to 
directions where the crossings appear very close to each other. This identifies the 
regions where one finds the actual helices, as opposed to the interhelical regions 
where one finds few crossings when using small windows. This analysis shows how 
the small- and large-scale shape features are discriminated in our approach. 

elical bundles 
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3 helices 
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Fig. 10. Change in the area of the no-crossing region So(pw ) 
with the window radius Pw for 1, 2, 3, and 4 s-hel ical  bundles. 

Figure 10 shows the surface areas A(pw) for the helical bundles. The large- 
and small-scale features are revealed by studying the large and small Pw values. At 
large Pw values, the area of the no-crossing region depends on the number of  
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helices. The larger the number of helices, the larger the total number of crossings. 
Accordingly, the areas decrease with an increment in the number of helices. The 
behavior is much more convoluted for small window radii. Whenpw is sufficiently 
small, the areas become larger as the number of helices packed increases. 

The results in fig. 10 show, at any rate, the overall functional dependence of 
A(pw) on Pw which is characteristic of tx-helices. The details of this functional 
dependence give one additional clues to recognize the occurrence of several helices 
packed in bundles. 

5. Fur ther  comments and conclusions 

The procedure discussed above provides an alternative approach to the analysis 
of macromolecular structure. The method leads to a simple, algorithmical three- 
dimensional topological shape description in terms of a continuum of spherical 
maps derived from the complete overcrossing pattern of the molecular backbone. 

By introducing the dependence of the spherical shape maps on the radius of 
a variable viewing window, one can distinguish large-scale or small-scale shape 
features in the backbone. As has been shown, large-scale features are mostly accountable 
for the type of structural motif and its size. On the other hand, small-scale structural 
features can serve to recognize the number and relative disposition of the basic 
motifs in 3-space. This procedure is suitable for studying the formation (or 
disappearance) of  structural motifs during protein folding. The potential of this 
methodology to complement molecular dynamics studies of computer-simulated 
protein unfolding is discussed in ref. [27]. 

Displays of So(Pw) maps give a detailed characterization of the molecular 
shape. However, we have shown that a good deal of this information can be retained 
by analyzing only the fractional surface area A(pw) associated with the no-crossing 
region So as a function of the window radius. This approach provides a single 
variable function which acts as a continuous, numerical global shape descriptor of 
space curves. 

For the sake of illustration, we have restricted the analysis to the use of the 
non-crossing region So(Pw). Without any modification, the procedure can be applied 
to any other overcrossing pattern of interest. Moreover, the overcrossing pattern can 
be specified in more detail by taking into account the handedness of the crossings, 
rather than just their number [20-24]. 

Several further refinements are possible. For instance, in refs. [22-24] we 
have discussed the possibility of introducing a cut-off e at the distance at which the 
overcrossings occur. A more detailed characterization can be formulated by considering 
both a cut-off and a reduced view. In this case, one would have a continuum of 
spherical shape maps defined in terms of the two parameters e and Pw. This information 
can be rendered in a manageable fashion as contour lines of constant surface area 
for So(Pw) in a two-dimensional e-pw diagram. This possibility will be discussed 
elsewhere. 
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